If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying 3y2 + 4y + -3 = 0 Reorder the terms: -3 + 4y + 3y2 = 0 Solving -3 + 4y + 3y2 = 0 Solving for variable 'y'. Begin completing the square. Divide all terms by 3 the coefficient of the squared term: Divide each side by '3'. -1 + 1.333333333y + y2 = 0 Move the constant term to the right: Add '1' to each side of the equation. -1 + 1.333333333y + 1 + y2 = 0 + 1 Reorder the terms: -1 + 1 + 1.333333333y + y2 = 0 + 1 Combine like terms: -1 + 1 = 0 0 + 1.333333333y + y2 = 0 + 1 1.333333333y + y2 = 0 + 1 Combine like terms: 0 + 1 = 1 1.333333333y + y2 = 1 The y term is 1.333333333y. Take half its coefficient (0.6666666665). Square it (0.4444444442) and add it to both sides. Add '0.4444444442' to each side of the equation. 1.333333333y + 0.4444444442 + y2 = 1 + 0.4444444442 Reorder the terms: 0.4444444442 + 1.333333333y + y2 = 1 + 0.4444444442 Combine like terms: 1 + 0.4444444442 = 1.4444444442 0.4444444442 + 1.333333333y + y2 = 1.4444444442 Factor a perfect square on the left side: (y + 0.6666666665)(y + 0.6666666665) = 1.4444444442 Calculate the square root of the right side: 1.201850425 Break this problem into two subproblems by setting (y + 0.6666666665) equal to 1.201850425 and -1.201850425.Subproblem 1
y + 0.6666666665 = 1.201850425 Simplifying y + 0.6666666665 = 1.201850425 Reorder the terms: 0.6666666665 + y = 1.201850425 Solving 0.6666666665 + y = 1.201850425 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + y = 1.201850425 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + y = 1.201850425 + -0.6666666665 y = 1.201850425 + -0.6666666665 Combine like terms: 1.201850425 + -0.6666666665 = 0.5351837585 y = 0.5351837585 Simplifying y = 0.5351837585Subproblem 2
y + 0.6666666665 = -1.201850425 Simplifying y + 0.6666666665 = -1.201850425 Reorder the terms: 0.6666666665 + y = -1.201850425 Solving 0.6666666665 + y = -1.201850425 Solving for variable 'y'. Move all terms containing y to the left, all other terms to the right. Add '-0.6666666665' to each side of the equation. 0.6666666665 + -0.6666666665 + y = -1.201850425 + -0.6666666665 Combine like terms: 0.6666666665 + -0.6666666665 = 0.0000000000 0.0000000000 + y = -1.201850425 + -0.6666666665 y = -1.201850425 + -0.6666666665 Combine like terms: -1.201850425 + -0.6666666665 = -1.8685170915 y = -1.8685170915 Simplifying y = -1.8685170915Solution
The solution to the problem is based on the solutions from the subproblems. y = {0.5351837585, -1.8685170915}
| 6-2(6+a)-a=-18 | | 5m+2=14-m | | 5m+2=14 | | 8x=68 | | -12x^2+18x+6= | | -0.4w=42 | | 4E=2L-20 | | 3T=12t | | 4b+8-2=10 | | -6n+5=-2 | | 12f-7.2=-1.2 | | A3=9=5 | | 6x+5x-3=81 | | 2x-3x=125 | | y^2-4y-x=-2 | | 2x³-3x=125 | | 12f-7.2=-12 | | 4(x-9)=-20 | | 20x^2y^3z-35x^3y^2z= | | 4x+8=2x+3+51 | | -3(x²+2)+2x² | | y=1.06x+6 | | 3(6-n)=-3(n-8)j | | y=1.6x+6 | | 3(a+b)-2(b-a)+4(2a+3b)= | | 9(2p-5)-3(7p+3)=0 | | 6+8(5x+5)=-3x-40 | | h+8x+-8x=104+-8x | | 0.75a=-3 | | h+8x=104 | | 20x^2y^3z-35x^3y^2z-40x^2y^2z= | | 4x-3(x-2)=x+6 |